SARS-CoV-2, a member of the coronavirus family, is the causative agent of the COVID-19 pandemic. Currently, there is still an urgent need in developing an efficient therapeutic intervention. In this study, we aimed at evaluating the therapeutic effect of a single intranasal treatment of the TLR3/MDA5 synthetic agonist Poly(I:C) against a lethal dose of SARS-CoV-2 in K18-hACE2 transgenic mice. We demonstrate here that early Poly(I:C) treatment acts synergistically with SARS-CoV-2 to induce an intense, immediate and transient upregulation of innate immunity-related genes in lungs. This effect is accompanied by viral load reduction, lung and brain cytokine storms prevention and increased levels of macrophages and NK cells, resulting in 83% mice survival, concomitantly with long-term immunization. Thus, priming the lung innate immunity by Poly(I:C) or alike may provide an immediate, efficient and safe protective measure against SARS-CoV-2 infection.
CITATION STYLE
Tamir, H., Melamed, S., Erez, N., Politi, B., Yahalom-Ronen, Y., Achdout, H., … Israely, T. (2022). Induction of Innate Immune Response by TLR3 Agonist Protects Mice against SARS-CoV-2 Infection. Viruses, 14(2). https://doi.org/10.3390/v14020189
Mendeley helps you to discover research relevant for your work.