Objective Cochlear Implant (CI) programming based on subjective psychophysical fine-tuning of loudness scaling involves active participation and cognitive skills and thus may not be appropriate for difficult-to-condition populations. The electrically evoked stapedial reflex threshold (eSRT) is an objective measure that is suggested to provide clinical benefit to CI programming. This study aimed to compare speech reception outcomes between subjective and eSRT objectively determined CI maps for adult MED-EL recipients. The effect of cognitive skills on these skills was further assessed. Methods Twenty-seven post lingually hearing-impaired MED-EL CI recipients were recruited, 6 with mild cognitive impairment (MCI- 4 male, 79 years ± 5), 21 with normal cognitive function (5 male, 63 years ± 12). Two MAPs were generated: a subjective MAP and an objective MAP in which eSRTs determined maximum comfortable levels (M-Levels). Participants were randomly divided into two groups. Group A trialled the objective MAP for two weeks before returning for outcome assessment. During the following two weeks, Group A trialled the subjective MAP before returning for outcome assessment. Group B trialled MAPs in reverse. Outcome measures included the Hearing Implant Sound Quality Index (HISQUI), Consonant- Nucleus-Consonant (CNC) word test, and Bamford-Kowal-Bench Speech-in-Noise (BKB-SIN) test. Results eSRT based MAPS were obtained in 23 of the participants. A strong relationship was demonstrated between global charge between eSRT-based and psychophysical-based M-Levels (r = 0.89, p < .001). The Montreal Cognitive Assessment for the Hearing Impaired (MoCA-HI) testing identified 6 CI recipients with MCI (MoCA-HI total score ≤23). The MCI group was older (63, 79 years), but were not otherwise different in sex, duration of hearing loss or duration of CI use. For all patients, no significant differences were found for sound quality or speech in quiet scores between eSRT-based and psychophysical-based MAPs. However, psychophysically determined MAPs showed significantly better speech-in-noise reception (6.74 vs 8.20-dB SNR, p = .34). MoCA-HI scores showed a significant, moderate negative correlation with BKB SIN for both MAP approaches (Kendall's Tau B, p = .015 and p = .008), with no effect on the difference between MAP approaches. Conclusion Results indicate eSRT-based methods provide poorer outcomes than psychophysicalbased method. While speech-in-noise reception is correlated with MoCA-HI score, this affected both behaviourally and objectively determined MAPs. The results suggest fair confidence in the eSRT-based method as a guide for setting M-Level for difficult-to-condition CI populations in simple listening conditions.
CITATION STYLE
Yiannos, J. M., Bester, C. W., Zhao, C., Gell, B., & Jayakody, D. M. P. (2023). Speech-in-noise performance in objectively determined cochlear implant maps, including the effect of cognitive state. PLoS ONE, 18(6 June). https://doi.org/10.1371/journal.pone.0286986
Mendeley helps you to discover research relevant for your work.