Data accuracy has always been the essential and foremost requirement of any communication. A Real-time Water quality-monitoring system (WQMS) needs high-level data accuracy to process the water perfectly for the desired usage in any specific purpose. Exponential growth in man-made processes, human activities, Industrialization, and economic growth along with depleting safe water resources has made the water pollution issue a foremost threat to human survival and human civilisation as a whole. The Conventional WQMS lacks in providing data accuracy while testing and analysing the water samples at sites due to improper data transmission, human intervention, instrument node working and calibration issues. Therefore, monitoring the quality of the water is essential with a prime focus on data accuracy through proper testing, data analysis and data transmission methods to provide real-time data accuracy. In this research work, an IOT-based wireless sensor network (WSN) is proposed that uses mesh networking to connect the sensor nodes and message queuing telemetry transfer (MQTT) protocol to send the acquired data to a cloud server ADDA Fruit IO. ESP32 standalone microcontroller with in-built Wi-Fi is used as a transceiver on sensor nodes and master nodes. As far as sensor and master node power is concerned, a self-adapting power generation system is incorporated using solar power and water energy harvesting techniques. The sensor nodes are calibrated as per WHO standards using deionized water and buffer capsules. Five random samples are collected from river water, pond water, Borewell water, R.O water and Municipal committee water to analyse the proposed system’s accuracy. The accuracy test and analysis is done using statistical tools on water sample measurements by the proposed sensor node, and the same is compared with the actual certified instrument, hardware manual-based measurement, Laboratory value check and transmitted value on Cloud Server. The proposed WQMS is designed to measure various WQM parameters i.e. Total Dissolve Solid (TDS), pH, Temperature and turbidity and to ensure data accuracy.
CITATION STYLE
Singh, J., Srivastava, A., & Dalal, V. (2023). Designing of Real-time Communication Method to Monitor Water Quality using WSN Based on IOT. International Journal on Recent and Innovation Trends in Computing and Communication, 11(7s), 437–446. https://doi.org/10.17762/ijritcc.v11i7s.7020
Mendeley helps you to discover research relevant for your work.