Impact of residual and intrafractional errors on strategy of correction for image-guided accelerated partial breast irradiation

21Citations
Citations of this article
37Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: The cone beam CT (CBCT) guided radiation can reduce the systematic and random setup errors as compared to the skin-mark setup. However, the residual and intrafractional (RAIF) errors are still unknown. The purpose of this paper is to investigate the magnitude of RAIF errors and correction action levels needed in cone beam computed tomography (CBCT) guided accelerated partial breast irradiation (APBI).Methods: Ten patients were enrolled in the prospective study of CBCT guided APBI. The postoperative tumor bed was irradiated with 38.5 Gy in 10 fractions over 5 days. Two cone-beam CT data sets were obtained with one before and one after the treatment delivery. The CBCT images were registered online to the planning CT images using the automatic algorithm followed by a fine manual adjustment. An action level of 3 mm, meaning that corrections were performed for translations exceeding 3 mm, was implemented in clinical treatments. Based on the acquired data, different correction action levels were simulated, and random RAIF errors, systematic RAIF errors and related margins before and after the treatments were determined for varying correction action levels.Results: A total of 75 pairs of CBCT data sets were analyzed. The systematic and random setup errors based on skin-mark setup prior to treatment delivery were 2.1 mm and 1.8 mm in the lateral (LR), 3.1 mm and 2.3 mm in the superior-inferior (SI), and 2.3 mm and 2.0 mm in the anterior-posterior (AP) directions. With the 3 mm correction action level, the systematic and random RAIF errors were 2.5 mm and 2.3 mm in the LR direction, 2.3 mm and 2.3 mm in the SI direction, and 2.3 mm and 2.2 mm in the AP direction after treatments delivery. Accordingly, the margins for correction action levels of 3 mm, 4 mm, 5 mm, 6 mm and no correction were 7.9 mm, 8.0 mm, 8.0 mm, 7.9 mm and 8.0 mm in the LR direction; 6.4 mm, 7.1 mm, 7.9 mm, 9.2 mm and 10.5 mm in the SI direction; 7.6 mm, 7.9 mm, 9.4 mm, 10.1 mm and 12.7 mm in the AP direction, respectively.Conclusions: Residual and intrafractional errors can significantly affect the accuracy of image-guided APBI with nonplanar 3DCRT techniques. If a 10-mm CTV-PTV margin is applied, a correction action level of 5 mm or less is necessary so as to maintain the RAIF errors within 10 mm for more than 95% of fractions. Pre-treatment CBCT guidance is not a guarantee for safe delivery of the treatment despite its known benefits of reducing the initial setup errors. A patient position verification and correction during the treatment may be a method for the safe delivery. © 2010 Cai et al; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Cai, G., Hu, W. G., Chen, J. Y., Yu, X. L., Pan, Z. Q., Yang, Z. Z., … Jiang, G. L. (2010). Impact of residual and intrafractional errors on strategy of correction for image-guided accelerated partial breast irradiation. Radiation Oncology, 5(1). https://doi.org/10.1186/1748-717X-5-96

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free