Objective: To evaluate the influence of polymorphisms in nucleotide excision repair (NER) and homologous recombination repair (HRR) pathways on the development of osteosarcoma patients. Methods: Genotypes of ERCC1 rs11615 and rs3212986, ERCC2 rs1799793 and rs13181, NBN rs709816 and rs1805794, RAD51 rs1801320, rs1801321 and rs12593359, and XRCC3 rs861539 were conducted by Polymerase Chain Reaction Restriction Fragment Length Polymorphism (PCR-RFLP) assay. Results: Total 148 osteosarcoma patients and 296 control subjects were collected from Taizhou First People’s Hospital. Conditional logistic regression analyses found that individuals carrying with GA+AA genotype of ERCC2 rs1799793 and GC+CC genotype of NBN rs1805794 were significantly associated with increased risk of osteosarcoma, and the ORs(95%CI) were 1.58(1.03-2.41) and 2.66(1.73-4.08), respectively. We found that GA+AA genotype of ERCC2 rs1799793 or GC+CC genotype of NBN rs1805794 were associated with an increased risk of osteosarcoma in females, with ORs(95%CI) of 2.42(1.20-4.87) and 2.01(1.07-4.23), respectively. Conclusion: Our results suggest that ERCC2 rs1799793 and NBN rs1805794 polymorphisms were associated with an increased risk for osteosarcoma, which suggests that NER and HRR pathways modulate the risk of developing osteosarcoma.
CITATION STYLE
Jin, G., Wang, M., Chen, W., Shi, W., Yin, J., & Gang, W. (2015). Single nucleotide polymorphisms of nucleotide excision repair and homologous recombination repair pathways and their role in the risk of osteosarcoma. Pakistan Journal of Medical Sciences, 31(2), 269–273. https://doi.org/10.12669/pjms.312.6569
Mendeley helps you to discover research relevant for your work.