Photoluminescent investigation of the doping site of Eu3+-doped [Zn3(BTC)2∙12H2O] metal-organic framework prepared by microwave-assisted hydrothermal synthesis

3Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The [Zn3(BTC)2∙12H2O] (BTC = 1,3,5-tricarboxylate) metal-organic framework (MOF) was successfully synthesized using a microwave-assisted hydrothermal synthesis technique, which allowed for significantly decreased reaction time compared to the production of the same compound via conventional heating. In situ doping with Eu3+ ions at concentrations ranging from 1.0 to 5.0 mol% produced doped materials whose emission ranged from blue to red color. The Eu3+ spectroscopic properties were used to study the incorporation of the dopant into the structure of [Zn3(BTC)2∙12H2O], even at very low concentrations. These experiments confirmed the usefulness of this ion as a luminescent probe, as it permitted the identification of small variations in structure not perceptible by X-ray diffraction. The variation in the coordination environment induced by increases in doping percentage was analyzed by evaluating changes in the characteristic Eu3+ excitation and emission profiles, using them to calculate luminescence lifetimes, experimental intensity parameters Ωλ (λ: 2 and 4) as well as the intrinsic quantum yield () of the 5D0 emitting level of each doped MOF. The excitation and luminescence spectra show that intramolecular energy transfer from the BTC linker to Eu3+ ion, and we could observe the emission color tuning originated from the emissions of the BTC ligand and Eu3+ ion.

Cite

CITATION STYLE

APA

Cunha, C. S., Malta, O. L., Terraschke, H., & Brito, H. F. (2020). Photoluminescent investigation of the doping site of Eu3+-doped [Zn3(BTC)2∙12H2O] metal-organic framework prepared by microwave-assisted hydrothermal synthesis. Journal of the Brazilian Chemical Society, 31(11), 2409–2420. https://doi.org/10.21577/0103-5053.20200155

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free