Degradation pathways of 2- and 4-nitrobenzoates in Cupriavidus sp. strain ST-14 and construction of a recombinant strain, ST-14::3NBA, capable of degrading 3-nitrobenzoate

17Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Strain ST-14, characterized as a member of the genus Cupriavidus, was capable of utilizing 2- and 4-nitrobenzoates individually as sole sources of carbon and energy. Biochemical studies revealed the assimilation of 2- and 4-nitrobenzoates via 3-hydroxyanthranilate and protocatechuate, respectively. Screening of a genomic fosmid library of strain ST-14 constructed in Escherichia coli identified two gene clusters, onb and pob-pca, to be responsible for the complete degradation of 2-nitrobenzoate and protocatechuate, respectively. Additionally, a gene segment (pnb) harboring the genes for the conversion of 4-nitrobenzoate to protocatechuate was unveiled by transposome mutagenesis. Reverse transcription-PCR analysis showed the polycistronic nature of the gene clusters, and their importance in the degradation of 2- and 4-nitrobenzoates was ascertained by gene knockout analysis. Cloning and expression of the relevant pathway genes revealed the transformation of 2-nitrobenzoate to 3-hydroxyanthranilate and of 4-nitrobenzoate to protocatechuate. Finally, incorporation of functional 3-nitrobenzoate dioxygenase into strain ST-14 allowed the recombinant strain to utilize 3-nitrobenzoate via the existing protocatechuate metabolic pathway, thereby allowing the degradation of all three isomers of mononitrobenzoate by a single bacterial strain.

Cite

CITATION STYLE

APA

Basu, S., Pal Chowdhury, P., Deb, S., & Dutta, T. K. (2016). Degradation pathways of 2- and 4-nitrobenzoates in Cupriavidus sp. strain ST-14 and construction of a recombinant strain, ST-14::3NBA, capable of degrading 3-nitrobenzoate. Applied and Environmental Microbiology, 82(14), 4253–4263. https://doi.org/10.1128/AEM.00739-16

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free