Manganese-zinc-ferrite nanoparticles (Mn0.5Zn0.5Fe2O4, MZF-NPs) prepared by an improved co-precipitation method and were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive spectrometry (EDS). Then thermodynamic testing of various doses of MZF-NPs was performed in vitro. The cytotoxicity of the Mn0.5Zn0.5Fe2O4 nanoparticles in vitro was tested by the MTT assay. A nanosized As2O3/Mn0.5Zn0.5Fe2O4 complex was made by an impregnation process. The complex's shape, component, envelop rate and release rate of As2O3 were measured by SEM, EDS and atom fluorescence spectrometry, respectively. The therapeutic effect of nanosized As2O3/Mn0.5Zn0.5Fe2O4 complex combined with magnetic fluid hyperthermia (MFH) on human hepatocelluar cells were evaluated in vitro by an MTT assay and flow cytometry. The results indicated that Mn0.5Zn0.5Fe2O4 and nanosized As2O3/Mn0.5Zn0.5Fe2O4 complex were both prepared successfully. The Mn0.5Zn0.5Fe2O4 nanoparticles had powerful absorption capabilities in a high-frequency alternating electromagnetic field, and had strong magnetic responsiveness. Moreover, Mn0.5Zn0.5Fe2O4 didn't show cytotoxicity in vitro. The therapeutic result reveals that the nanosized As2O3/Mn0.5Zn0.5Fe2O4 complex can significantly inhibit the growth of hepatoma carcinoma cells. © 2009 by the authors.
CITATION STYLE
Zhang, J., & Zhang, D. (2009). Preparation of a Nanosized As2O3/Mn0.5Zn0.5Fe2O4 complex and its anti-tumor effect on hepatocellular carcinoma cells. Sensors, 9(9), 7058–7068. https://doi.org/10.3390/s90907058
Mendeley helps you to discover research relevant for your work.