Variable selection for random effects two-part models

5Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Random effects two-part models have been applied to longitudinal studies for zero-inflated (or semi-continuous) data, characterized by a large portion of zero values and continuous non-zero (positive) values. Examples include monthly medical costs, daily alcohol drinks, relative abundance of microbiome, etc. With the advance of information technology for data collection and storage, the number of variables available to researchers can be rather large in such studies. To avoid curse of dimensionality and facilitate decision making, it is critically important to select covariates that are truly related to the outcome. However, owing to its intricate nature, there is not yet a satisfactory variable selection method available for such sophisticated models. In this paper, we seek a feasible way of conducting variable selection for random effects two-part models on the basis of the recently proposed “minimum information criterion” (MIC) method. We demonstrate that the MIC formulation leads to a reasonable formulation of sparse estimation, which can be conveniently solved with SAS Proc NLMIXED. The performance of our approach is evaluated through simulation, and an application to a longitudinal alcohol dependence study is provided.

Cite

CITATION STYLE

APA

Han, D., Liu, L., Su, X., Johnson, B., & Sun, L. (2019). Variable selection for random effects two-part models. Statistical Methods in Medical Research, 28(9), 2697–2709. https://doi.org/10.1177/0962280218784712

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free