Proteomic Identification of an Endogenous Synaptic SUMOylome in the Developing Rat Brain

8Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Synapses are highly specialized structures that interconnect neurons to form functional networks dedicated to neuronal communication. During brain development, synapses undergo activity-dependent rearrangements leading to both structural and functional changes. Many molecular processes are involved in this regulation, including post-translational modifications by the Small Ubiquitin-like MOdifier SUMO. To get a wider view of the panel of endogenous synaptic SUMO-modified proteins in the mammalian brain, we combined subcellular fractionation of rat brains at the post-natal day 14 with denaturing immunoprecipitation using SUMO2/3 antibodies and tandem mass spectrometry analysis. Our screening identified 803 candidate SUMO2/3 targets, which represents about 18% of the synaptic proteome. Our dataset includes neurotransmitter receptors, transporters, adhesion molecules, scaffolding proteins as well as vesicular trafficking and cytoskeleton-associated proteins, defining SUMO2/3 as a central regulator of the synaptic organization and function.

Cite

CITATION STYLE

APA

Pronot, M., Kieffer, F., Gay, A. S., Debayle, D., Forquet, R., Poupon, G., … Gwizdek, C. (2021). Proteomic Identification of an Endogenous Synaptic SUMOylome in the Developing Rat Brain. Frontiers in Molecular Neuroscience, 14. https://doi.org/10.3389/fnmol.2021.780535

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free