Quest for compounds at the verge of charge transfer instabilities: The case of silver(II) chloride

8Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

Electron-transfer processes constitute one important limiting factor governing stability of solids. One classical case is that of CuI2, which has never been prepared at ambient pressure conditions due to feasibility of charge transfer between metal and nonmetal (CuI2 → CuI +12I2). Sometimes, redox instabilities involve two metal centers, e.g., AgO is not an oxide of divalent silver but rather silver(I) dioxoargentate(III), Ag(I)[Ag(III)O2]. Here, we look at the particularly interesting case of a hypothetical AgCl2 where both types of redox instabilities operate simultaneously. Since standard redox potential of the Ag(II)/Ag(I) redox pair reaches some 2 V versus Normal Hydrogen Electrode (NHE), it might be expected that Ag(II) would oxidize Cl− anion with great ease (standard redox potential of the12Cl2/Cl− pair is + 1.36 V versus Normal Hydrogen Electrode). However, ionic Ag(II)Cl2 benefits from long-distance electrostatic stabilization to a much larger degree than Ag(I)Cl + 1 2Cl2, which affects relative stability. Moreover, Ag(II) may disproportionate in its chloride, just like it does in an oxide; this is what AuCl2 does, its formula corresponding in fact to Au(I)[Au(III)Cl4]. Formation of polychloride substructure, as for organic derivatives of Cl3− anion, is yet another possibility. All that creates a very complicated potential energy surface with a few chemically distinct minima i.e., diverse polymorphic forms present. Here, results of our theoretical study for AgCl2 will be presented including outcome of evolutionary algorithm structure prediction method, and the chemical identity of the most stable form will be uncovered together with its presumed magnetic properties. Contrary to previous rough estimates suggesting substantial instability of AgCl2, we find that AgCl2 is only slightly metastable (by 52 meV per formula unit) with respect to the known AgCl and12Cl2, stable with respect to elements, and simultaneously dynamically (i.e., phonon) stable. Thus, our results point out to conceivable existence of AgCl2 which should be targeted via non-equilibrium approaches.

Cite

CITATION STYLE

APA

Derzsi, M., Grzelak, A., Grochala, W., Kondratiuk, P., & Tokár, K. (2019). Quest for compounds at the verge of charge transfer instabilities: The case of silver(II) chloride. Crystals, 9(8). https://doi.org/10.3390/cryst9080423

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free