Adsorption of Uranyl Ions at the Nano-hydroxyapatite and Its Modification

37Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Nano-hydroxyapatite and its modification, hydroxyapatite with the excess of phosphorus (P-HAP) and hydroxyapatite with the carbon ions built into the structure (C-HAP), were prepared by the wet method. They were studied by means of XRD, accelerated surface area and porosimetry (ASAP), and SEM. The size of crystallites computed using the Scherrer method was nano-hydroxyapatite (HAP) = 20 nm; P-HAP—impossible to determine; C-HAP = 22 nm; nano-HAP/U(VI) = 13.7 nm; P-HAP/U(VI)—impossible to determine, C-HAP/U(VI) = 11 nm. There were determined basic parameters characterizing the double electrical layer at the nano-HAP/electrolyte and P-HAP/electrolyte, C-HAP/electrolyte inter faces: density of the surface charge and zeta potential. The adsorption properties of nano-HAP sorbent in relation to U(VI) ions were studied by the batch technique. The adsorption processes were rapid in the first 60 min and reached the equilibrium within approximately 120 min (for P-HAP) and 300 min (for C-HAP and nano-HAP). The adsorption process fitted well with the pseudo-second-order kinetics. The Freundlich, Langmuir–Freundlich, and Dubinin–Radushkevich models of isotherms were examined for their ability to the equilibrium sorption data. The maximum adsorption capabilities (qm) were 7.75 g/g for P-HAP, 1.77 g/g for C-HAP, and 0.8 g/g for HAP at 293 K.

Cite

CITATION STYLE

APA

Skwarek, E., Gładysz–Płaska, A., & Bolbukh, Y. (2017). Adsorption of Uranyl Ions at the Nano-hydroxyapatite and Its Modification. Nanoscale Research Letters, 12(1). https://doi.org/10.1186/s11671-017-2042-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free