The rapid spread of the use of new 24-color karyotyping techniques has preceded their standardization. This is best documented by the fact that the exact resolution limits have not yet been defined. Indeed, it is shown here that a substantial proportion of interchromosomal aberrations will be missed by all multicolor karyotyping systems currently in use. We demonstrate that both the sensitivity and the specificity of 24-color karyotyping critically depend on the fluorochrome composition of chromosomes involved in an interchromosomal rearrangement. As a solution, we introduce a conceptual change in probe labeling. Seven-fluorochrome sets that overcome many of the current limitations are described, and examples of their applications are shown. The criteria presented here for an optimized probe-set design and for the estimation of resolution limits should have important consequences for pre- and postnatal diagnostics and for research applications.
CITATION STYLE
Azofeifa, J., Fauth, C., Kraus, J., Maierhofer, C., Langer, S., Bolzer, A., … Speicher, M. R. (2000). An optimized probe set for the detection of small interchromosomal aberrations by use of 24-color FISH. American Journal of Human Genetics, 66(5), 1684–1688. https://doi.org/10.1086/302875
Mendeley helps you to discover research relevant for your work.