Iron complexation to oxygen rich marine natural products: A computational study

3Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

Abstract

The natural products kahalalide F, halichondrin B, and discodermolide are relatively large structures that were originally harvested from marine organisms. They are oxygen rich structures that, to varying degrees, should have the ability to bind iron (II or III) by Fe-O and/or Fe-N bonds. In this semi empirical study, the binding of these natural products to iron (II) is studied and the aqueous stability factor (ASF) is used to determine which bonding configuration is most stable. The energy, the complex charge (+1), the average Fe-O (or Fe-N) bond distances and the dipole moments are used to calculate the ASF. The ASF provides insight to which complex will be the most stable and water soluble, important for a medicinal application. The ability of a molecule with a more than six oxygen and/or nitrogen atoms to bind iron (hexavalent, octahedral) by shifting which six atoms (O/N) are bound to the iron qualifies it as a polarity adaptive molecule. © 2010 by the authors; licensee Molecular Diversity Preservation International.

Cite

CITATION STYLE

APA

Manning, T. J., Williams, J., Jarrard, J., & Gorman, T. (2010). Iron complexation to oxygen rich marine natural products: A computational study. Marine Drugs, 8(1). https://doi.org/10.3390/md8010001

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free