Accuracy of Artificial Intelligence-Based Technologies for the Diagnosis of Atrial Fibrillation: A Systematic Review and Meta-Analysis

4Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

Abstract

Atrial fibrillation (AF) is the most common arrhythmia with a high burden of morbidity including impaired quality of life and increased risk of thromboembolism. Early detection and management of AF could prevent thromboembolic events. Artificial intelligence (AI)--based methods in healthcare are developing quickly and can be proved as valuable for the detection of atrial fibrillation. In this metanalysis, we aim to review the diagnostic accuracy of AI-based methods for the diagnosis of atrial fibrillation. A predetermined search strategy was applied on four databases, the PubMed on 31 August 2022, the Google Scholar and Cochrane Library on 3 September 2022, and the Embase on 15 October 2022. The identified studies were screened by two independent investigators. Studies assessing the diagnostic accuracy of AI-based devices for the detection of AF in adults against a gold standard were selected. Qualitative and quantitative synthesis to calculate the pooled sensitivity and specificity was performed, and the QUADAS-2 tool was used for the risk of bias and applicability assessment. We screened 14,770 studies, from which 31 were eligible and included. All were diagnostic accuracy studies with case–control or cohort design. The main technologies used were: (a) photoplethysmography (PPG) with pooled sensitivity 95.1% and specificity 96.2%, and (b) single-lead ECG with pooled sensitivity 92.3% and specificity 96.2%. In the PPG group, 0% to 43.2% of the tracings could not be classified using the AI algorithm as AF or not, and in the single-lead ECG group, this figure fluctuated between 0% and 38%. Our analysis showed that AI-based methods for the diagnosis of atrial fibrillation have high sensitivity and specificity for the detection of AF. Further studies should examine whether utilization of these methods could improve clinical outcomes.

Cite

CITATION STYLE

APA

Manetas-Stavrakakis, N., Sotiropoulou, I. M., Paraskevas, T., Maneta Stavrakaki, S., Bampatsias, D., Xanthopoulos, A., … Briasoulis, A. (2023, October 1). Accuracy of Artificial Intelligence-Based Technologies for the Diagnosis of Atrial Fibrillation: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine. Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/jcm12206576

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free