Hydroalkylation, the direct addition of a C(sp3)–H bond across an olefin, is a desirable strategy to produce valuable, complex structural motifs in functional materials, pharmaceuticals, and natural products. Herein, we report a reliable method for accessing α-branched amines via nickel-catalyzed hydroalkylation reactions. Specifically, by using bis(cyclooctadiene)nickel (Ni(cod)2) together with a phosphine ligand, we achieved a formal C(sp3)–H bond insertion reaction between olefins and N-sulfonyl amines without the need for an external hydride source. The amine not only provides the alkyl motif but also delivers hydride to the olefin by means of a nickel-engaged β–hydride elimination/reductive elimination process. This method provides a platform for constructing chiral α-branched amines by using a P-chiral ligand, demonstrating its potential utility in organic synthesis. Notably, a sulfonamidyl boronate complex formed in situ under basic conditions promotes ring-opening of the azanickellacycle reaction intermediate, leading to a significant improvement of the catalytic efficiency.
CITATION STYLE
Yan, X. B., Li, L., Wu, W. Q., Xu, L., Li, K., Liu, Y. C., & Shi, H. (2021). Ni-catalyzed hydroalkylation of olefins with N-sulfonyl amines. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-26194-y
Mendeley helps you to discover research relevant for your work.