Cassava is a starch-storing root crop that is an important source of dietary energy in tropical regions of the world. Genetic improvement of cassava by breeding is hindered by late flowering and sparse flower production in lines that are needed as parents. To advance understanding of regulatory mechanisms in cassava, this work sought to identify and characterize homologs of the FLOWERING LOCUS T (FT) gene. Ten members of the phosphatidylethanolamine-binding protein gene family, to which FT belongs, were obtained from the cassava genome database. Phylogenetic and sequence analysis of these proteins was used to identify two putative FT homologs which had amino acid sequences at key positions in accordance with those predicted for functional FTs. Expression of these ten genes was determined in mature leaves, immature leaves, flower buds, fibrous roots, storage roots and stem. The FT transcripts were expressed in mature leaves, as expected for their possible role in leaf-to-apical meristem signaling. In growth chamber studies, plants flowered earlier in long-day photoperiod than in short-day photoperiod. Expression studies indicated that while MeFT1 was expressed in leaves without a clear-cut photoperiod response, MeFT2 was expressed in a photoperiod-dependent manner, consistent with its involvement in photoperiodic control of flowering. In growth chambers that subjected plants to a range of temperatures from 22 to 34 °C, flowering was delayed by warmer temperatures although MeFT1 and MeFT2 expression declined in only one genotype, indicating other factors regulate this response. The earliest flowering genotype, IBA980002, had high levels of MeFT1 and MeFT2 expression, suggesting that both homologs contribute to earliness of this genotype.
CITATION STYLE
Adeyemo, O. S., Hyde, P. T., & Setter, T. L. (2019). Identification of FT family genes that respond to photoperiod, temperature and genotype in relation to flowering in cassava (Manihot esculenta, Crantz). Plant Reproduction, 32(2), 181–191. https://doi.org/10.1007/s00497-018-00354-5
Mendeley helps you to discover research relevant for your work.