Quantification of large scale DNA organization for predicting prostate cancer recurrence

12Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This study investigates whether Genomic Organization at Large Scales (which we propose to call GOALS) as quantified via nuclear phenotype characteristics and cell sociology features (describing cell organization within tissue) collected from prostate tissue microarrays (TMAs) can separate biochemical failure from biochemical nonevidence of disease (BNED) after radical prostatectomy (RP). Of the 78 prostate cancer tissue cores collected from patients treated with RP, 16 who developed biochemical relapse (failure group) and 16 who were BNED patients (nonfailure group) were included in the analyses (36 cores from 32 patients). A section from this TMA was stained stoichiometrically for DNA using the Feulgen–Thionin methodology, and scanned with a Pannoramic MIDI scanner. Approximately 110 nuclear phenotypic features, predominately quantifying large scale DNA organization (GOALS), were extracted from each segmented nuclei. In addition, the centers of these segmented nuclei defined a Voronoi tessellation and subsequent architectural analysis. Prostate TMA core classification as biochemical failure or BNED after RP using GOALS features was conducted (a) based on cell type and cell position within the epithelium (all cells, all epithelial cells, epithelial >2 cell layers away from basement membrane) from all cores, and (b) based on epithelial cells more than two cell layers from the basement membrane using a Classifier trained on Gleason 6, 8, 9 (16 cores) only and applied to a Test set consisting of the Gleason 7 cores (20 cores). Successful core classification as biochemical failure or BNED after RP by a linear classifier was 75% using all cells, 83% using all epithelial cells, and 86% using epithelial >2 layers. Overall success of predicted classification by the linear Classifier of (b) was 87.5% using the Training Set and 80% using the Test Set. Overall success of predicted progression using Gleason score alone was 75% for Gleason >7 as failures and 69% for Gleason >6 as failures. © 2017 International Society for Advancement of Cytometry.

Cite

CITATION STYLE

APA

MacAulay, C., Keyes, M., Hayes, M., Lo, A., Wang, G., Guillaud, M., … Palcic, B. (2017). Quantification of large scale DNA organization for predicting prostate cancer recurrence. Cytometry Part A, 91(12), 1164–1174. https://doi.org/10.1002/cyto.a.23287

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free