Automated brain tumor segmentation on multi-modal MR image using SegNet

149Citations
Citations of this article
117Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The potential of improving disease detection and treatment planning comes with accurate and fully automatic algorithms for brain tumor segmentation. Glioma, a type of brain tumor, can appear at different locations with different shapes and sizes. Manual segmentation of brain tumor regions is not only time-consuming but also prone to human error, and its performance depends on pathologists’ experience. In this paper, we tackle this problem by applying a fully convolutional neural network SegNet to 3D data sets for four MRI modalities (Flair, T1, T1ce, and T2) for automated segmentation of brain tumor and subtumor parts, including necrosis, edema, and enhancing tumor. To further improve tumor segmentation, the four separately trained SegNet models are integrated by post-processing to produce four maximum feature maps by fusing the machine-learned feature maps from the fully convolutional layers of each trained model. The maximum feature maps and the pixel intensity values of the original MRI modalities are combined to encode interesting information into a feature representation. Taking the combined feature as input, a decision tree (DT) is used to classify the MRI voxels into different tumor parts and healthy brain tissue. Evaluating the proposed algorithm on the dataset provided by the Brain Tumor Segmentation 2017 (BraTS 2017) challenge, we achieved F-measure scores of 0.85, 0.81, and 0.79 for whole tumor, tumor core, and enhancing tumor, respectively. Experimental results demonstrate that using SegNet models with 3D MRI datasets and integrating the four maximum feature maps with pixel intensity values of the original MRI modalities has potential to perform well on brain tumor segmentation.

Cite

CITATION STYLE

APA

Alqazzaz, S., Sun, X., Yang, X., & Nokes, L. (2019). Automated brain tumor segmentation on multi-modal MR image using SegNet. Computational Visual Media, 5(2), 209–219. https://doi.org/10.1007/s41095-019-0139-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free