In this study, an integrated multi-soil-layering and subsurface wastewater infiltration (MSL-SWI) system was developed for decentralized domestic sewage treatment under high hydraulic loading rates (HLRs). To improve sustainable nitrogen removal, the influence of intermittent operation and shunt distributing wastewater on the performance of MSL-SWI systems was investigated. The optimal performance—with removal efficiencies of 93.41% for chemical oxygen demand, 97.91% for total phosphorus, 74.02% for ammonia nitrogen, and 73.56% for total nitrogen—was achieved using both intermittent operation and shunt distributing wastewater under an HLR of 0.3 m3 m−2 d−1. The activity of microbial nitrogen functional genes (i.e., amoA, nirK, nirS, nosZ, and anammox 16S rRNA) and their relationships with nitrogen transformation rates were further analyzed in different layers of the system. The results imply that nitrification and anaerobic ammonium oxidation in the MSL section coupled with nitrification and denitrification in the SWI section contribute to main the mechanisms of sustainable nitrogen removal. In summary, MSL-SWI systems not only operate with high efficiency under high HLRs, but the contaminant removal is also stable and sustainable, which are promising properties for domestic sewage treatment in areas where land resources are limited.
CITATION STYLE
Li, D., Wang, X., Chi, L., Zhang, Z., Liu, Y., & Li, X. (2021). Decentralized domestic sewage treatment using an integratedmulti-soil-layering and subsurface wastewater infiltration system. Water (Switzerland), 13(4). https://doi.org/10.3390/w13040431
Mendeley helps you to discover research relevant for your work.