In this study, the influence of mechanically activated electric arc furnace slag (EAFS) was investigated through compressive strength tests on 50 mm mortar cubes. The objective was to convert the wasteful EAFS into a useful binding material to reduce the cement content in concrete without compromising strength and economy. Four different groups of mortar were cast which include control mortar, reference fly ash mortar, mortar containing EAFS to determine its optimum fineness and replacement with cement, mortar blend containing fly ash and EAFS of optimum fineness. EAFS were identified with respect to its fineness as slag ground (SG), slag-fine (SF) 100% passing 75 μm sieve, and slag-super-fine (SSF) 100% passing 45 μm sieve. Compressive strength was measured according to ASTM C109. Specimens were cured under different temperatures and moisture to incorporate the effects of normal and hot environmental conditions. Compressive strength of mortars increases with fineness of EAFS and its strength activity index matches the ASTM C989 blast furnace slag (BFS) Grade 80 up to 30% cement substitution and Grade 100 when 10% cement substituted with SSF. The influence of curing temperatures was also significant in mortars containing SG or 10% SF where strength decreased with increasing curing temperature. However, a 20-30% and 20% cement substitution with SF produced strength comparable to control and reference fly ash mortars under moderate (40 °C) and high curing temperature (60 °C), respectively. The utilization of EAFS as binder in concrete may reduce needs for cement, as well as save environment and natural resources from depletion.
CITATION STYLE
Amin, M. N., Khan, K., Saleem, M. U., Khurram, N., & Niazi, M. U. K. (2017). Influence of mechanically activated electric arc furnace slag on compressive strength of mortars incorporating curing moisture and temperature effects. Sustainability (Switzerland), 9(8). https://doi.org/10.3390/su9081178
Mendeley helps you to discover research relevant for your work.