Numerical Assessment of a Safety System to Minimize Injuries during a Cyclist Run-Over

1Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background. The World Health Organization has reported that 1.35 million people die on the roads every year due to road traffic accidents. This paper focuses on exploring a passive safety system that reduces lesions in the overtaking run-over scenario. Methods. Head Injury Criterion (HIC) and Combined Thoracic Index (CTI) were evaluated through numerical simulations using LS-Dyna®; in order to compare the computed results, three different speed scenarios were carried out (velocity of running over 40, 50, 60 km/h). Results. The computed results were divided into groups, A for the run-over test without a passive security system and B for the run-over test with a passive security system. For case A.1, the HIC15 was 3325. For case A.2, the HIC15 was 1510, and for case A.3, the HIC 15 was 1208. For case B.1, the HIC15 2605, for case B.2, the HIC15 was 1282, and for case B.3, the HIC was 730. Conclusion. The comparative results show that the passive safety system installed on the bicycle has an increased benefit impact on the severity of the injury on vulnerable road users, decreasing the probability of cranioencephalic lesions in all study cases. In addition, the thorax injuries are cut down only in the impact scenario at a speed of 40 km/h.

Cite

CITATION STYLE

APA

López-García, E. H., Carbajal-Romero, M. F., Flores-Campos, J. A., & Torres-Sanmiguel, C. R. (2021). Numerical Assessment of a Safety System to Minimize Injuries during a Cyclist Run-Over. Applied Bionics and Biomechanics, 2021. https://doi.org/10.1155/2021/9922210

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free