Oscillations may organize communication between components of large-scale brain networks. Although gamma-band oscillations have been repeatedly observed in cortical-basal ganglia circuits, their functional roles are not yet clear. Here I show that, in behaving rats, distinct frequencies of ventral striatal local field potential oscillations show coherence with different cortical inputs. The ∼50 Hz gamma oscillations that normally predominate in awake ventral striatum are coherent with piriform cortex, whereas ∼80-100 Hz high-gamma oscillations are coherent with frontal cortex. Within striatum, entrainment to gamma rhythms is selective to fast-spiking interneurons, with distinct fast-spiking interneuron populations entrained to different gamma frequencies. Administration of the psychomotor stimulant amphetamine or the dopamine agonist apomorphine causes a prolonged decrease in ∼50 Hz power and increase in ∼80-100 Hz power. The same frequency switch is observed for shorter epochs spontaneously in awake, undrugged animals and is consistently provoked for < 1 s following reward receipt. Individual striatal neurons can participate in these brief high-gamma bursts with, or without, substantial changes in firing rate. Switching between discrete oscillatory states may allow different modes of information processing during decision-making and reinforcement-based learning, and may also be an important systems-level process by which stimulant drugs affect cognition and behavior. © 2009 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
CITATION STYLE
Berke, J. D. (2009). Fast oscillations in cortical-striatal networks switch frequency following rewarding events and stimulant drugs. European Journal of Neuroscience, 30(5), 848–859. https://doi.org/10.1111/j.1460-9568.2009.06843.x
Mendeley helps you to discover research relevant for your work.