Acetic Acid Ketonization over Fe3O4/SiO2 for Pyrolysis Bio-Oil Upgrading

54Citations
Citations of this article
57Readers
Mendeley users who have this article in their library.

Abstract

A family of silica-supported, magnetite nanoparticle catalysts was synthesised and investigated for continuous-flow acetic acid ketonisation as a model pyrolysis bio-oil upgrading reaction. The physico-chemical properties of Fe3O4/SiO2 catalysts were characterised by using high-resolution transmission electron microscopy, X-ray absorption spectroscopy, X-ray photo-electron spectroscopy, diffuse reflectance infrared Fourier transform spectroscopy, thermogravimetric analysis and porosimetry. The acid site densities were inversely proportional to the Fe3O4 particle size, although the acid strength and Lewis character were size-invariant, and correlated with the specific activity for the vapour-phase acetic ketonisation to acetone. A constant activation energy (∼110 kJ mol−1), turnover frequency (∼13 h−1) and selectivity to acetone of 60 % were observed for ketonisation across the catalyst series, which implies that Fe3O4 is the principal active component of Red Mud waste.

Cite

CITATION STYLE

APA

Bennett, J. A., Parlett, C. M. A., Isaacs, M. A., Durndell, L. J., Olivi, L., Lee, A. F., & Wilson, K. (2017). Acetic Acid Ketonization over Fe3O4/SiO2 for Pyrolysis Bio-Oil Upgrading. ChemCatChem, 9(9), 1648–1654. https://doi.org/10.1002/cctc.201601269

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free