Predicting pt-195 nmr chemical shift and1 j(195 pt-31 p) coupling constant for pt(0) complexes using the nmr-dkh basis sets

4Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Pt(0) complexes have been widely used as catalysts for important reactions, such as the hydrosilylation of olefins. In this context, nuclear magnetic resonance (NMR) spectroscopy plays an important role in characterising of new structures and elucidating reaction mechanisms. In particular, the Pt-195 NMR is fundamental, as it is very sensitive to the ligand type and the oxidation state of the metal. In the present study, quantum mechanics computational schemes are proposed for the theoretical prediction of the Pt-195 NMR chemical shift and1 J(195 Pt–31 P) in Pt(0) complexes. The protocols were constructed using the B3LYP/LANL2DZ/def2-SVP/IEF-PCM(UFF) level for geometry optimization and the GIAO-PBE/NMR-DKH/IEF-PCM(UFF) level for NMR calculation. The NMR fundamental quantities were then scaled by empirical procedures using linear correlations. For a set of 30 Pt(0) complexes, the results showed a mean absolute deviation (MAD) and mean relative deviation (MRD) of only 107 ppm and 2.3%, respectively, for the Pt-195 NMR chemical shift. When the coupling constant is taken into account, the MAD and MRD for a set of 33 coupling constants in 26 Pt(0) complexes were of 127 Hz and 3.3%, respectively. In addition, the models were validated for a group of 17 Pt(0) complexes not included in the original group that had MAD/MRD of 92 ppm/1.7% for the Pt-195 NMR chemical shift and 146 Hz/3.6% for the1 J(195 Pt–31 P).

Cite

CITATION STYLE

APA

E Silva, J. H. C., Dos Santos, H. F., & Paschoal, D. F. S. (2021). Predicting pt-195 nmr chemical shift and1 j(195 pt-31 p) coupling constant for pt(0) complexes using the nmr-dkh basis sets. Magnetochemistry, 7(11). https://doi.org/10.3390/magnetochemistry7110148

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free