An innovative light chamber for measuring photosynthesis by three-dimensional plant organs

5Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: In plants, three-dimensional (3-D) organs such as inflorescences or fruits carry out photosynthesis and thus play a significant role in carbon assimilation and yield. However, this contribution has been poorly characterized because there is no reliable method for measuring photosynthesis by 3-D organs. One of the major challenges is ensuring the uniform irradiation of samples that are placed within a sealed chamber. Results: In this study, we developed an innovative chamber with homogeneous lighting that can be used to measure photosynthesis by large 3-D organs. It consisted of a 15-cm-long sealed transparent cylinder that was surrounded by a decagonal prismatic light source, made up of a mixture of red and blue LEDs. We characterized irradiance homogeneity within the chamber at a resolution level of 1 cm and 10°. Photosynthetic photon flux density (PPFD) along the central axis of the chamber could be set to any value between 100 and 1100 μmol m-2 s-1. The coefficient of variation for the irradiation values found throughout the chamber was 10% and that for the ratio of red-to-blue spectra was less than 1.5%. The temperature of the sample was regulated to stay within 1 °C of the target temperature, regardless of PPFD. We compared the performance of our device with that of a commercially available device employing unidirectional lighting. Specifically, we examined net photosynthesis in two sample types-wheat ears and grape clusters-at varying PPFD levels. Conclusions: The devices gave similar estimates of dark respiration, regardless of sample type or age. Conversely, net photosynthesis started to become asymptotic at lower irradiance levels in our device than in the conventional device because apparent quantum yield was three times higher. When examining the effects of irradiance heterogeneity, it was clear that biased estimates could result from systems employing unidirectional light sources. Our results also confirmed that our chamber could be a useful tool for obtaining more accurate estimates of photosynthesis by 3-D organs.

Cite

CITATION STYLE

APA

Fortineau, A., & Bancal, P. (2018). An innovative light chamber for measuring photosynthesis by three-dimensional plant organs. Plant Methods, 14(1). https://doi.org/10.1186/s13007-018-0288-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free