Morphological and kinematic basis of the hummingbird flight stroke: Scaling of flight muscle transmission ratio

70Citations
Citations of this article
136Readers
Mendeley users who have this article in their library.

Abstract

Hummingbirds (Trochilidae) are widely known for their insect-like flight strokes characterized by high wing beat frequency, small muscle strains and a highly supinated wing orientation during upstroke that allows for lift production in both halves of the stroke cycle. Here, we show that hummingbirds achieve these functional traits within the limits imposed by a vertebrate endoskeleton and muscle physiology by accentuating a wing inversion mechanism found in other birds and using long-axis rotational movement of the humerus. In hummingbirds, long-axis rotation of the humerus creates additional wing translational movement, supplementing that produced by the humeral elevation and depression movements of a typical avian flight stroke. This adaptation increases the wing-tomuscle- transmission ratio, and is emblematic of a widespread scaling trend among flying animals whereby wing-to-muscle-transmission ratio varies inversely with mass, allowing animals of vastly different sizes to accommodate aerodynamic, biomechanical and physiological constraints on muscle-powered flapping flight. © 2011 The Royal Society.

Cite

CITATION STYLE

APA

Hedrick, T. L., Tobalske, B. W., Ros, I. G., Warrick, D. R., & Biewener, A. A. (2012). Morphological and kinematic basis of the hummingbird flight stroke: Scaling of flight muscle transmission ratio. Proceedings of the Royal Society B: Biological Sciences, 279(1735), 1986–1992. https://doi.org/10.1098/rspb.2011.2238

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free