Accurate age estimates are crucial for assessing the life-histories of fish and providing management advice, but validation studies are rare for many species. We corroborated age estimates with annual cycles of oxygen isotopes (δ18O) in otoliths of 86 northern pike (Esox lucius) from the southern Baltic Sea, compared results with visual age estimates from scales and otoliths, and assessed bias introduced by different age-estimation structures on von Bertalanffy growth models and age-structured population models. Age estimates from otoliths were accurate, while age estimates from scales significantly underestimated the age of pike older than 6 years compared to the corroborated reference age. Asymptotic length ((Formula presented.)) was larger, and the growth coefficient (Formula presented.) was lower for scale ages than for corroborated age and otolith age estimates. Consequentially, scale-informed population models overestimated maximum sustainable yield ((Formula presented.)), biomass at (Formula presented.) ((Formula presented.)), relative frequency of trophy fish ((Formula presented.)), and optimal minimum length limit but underestimated fishing mortality at (Formula presented.) ((Formula presented.)). Using scale-based ages to inform management regulations for pike may therefore result in conservative management and lost yield. The overestimated asymptotic length may instill unrealistic expectations of trophy potential in recreational anglers targeting large pike, while the overestimation in MSY would cause unrealistic expectations of yield potential in commercial fishers.
CITATION STYLE
Rittweg, T. D., Trueman, C., Ehrlich, E., Wiedenbeck, M., & Arlinghaus, R. (2024). Corroborating otolith age using oxygen isotopes and comparing outcomes to scale age: Consequences for estimation of growth and reference points in northern pike (Esox lucius). Fisheries Management and Ecology, 31(1). https://doi.org/10.1111/fme.12646
Mendeley helps you to discover research relevant for your work.