Pointwise dimensions and spectra for measures associated with Poincaré recurrences are calculated for arbitrary weakly specified subshifts with positive entropy and for the corresponding special ows. It is proved that the Poincaré recurrence for a “typical” cylinder is asymptotically its length. Examples are provided which show that this is not true for some systems with zero entropy. Precise formulas for dimensions of measures associated with Poincaré recurrences are derived, which are comparable to Young's formula for the Hausdorff dimension of measures and Abramov's formula for the entropy of special ows. © 2000 American Mathematical Society.
CITATION STYLE
Afraimovich, V., Chazottes, J. R., & Saussol, B. (2000). Local dimensions for poincaré recurrences. Electronic Research Announcements of the American Mathematical Society, 6(9), 64–74. https://doi.org/10.1090/S1079-6762-00-00082-2
Mendeley helps you to discover research relevant for your work.