De novo transcriptome assembly, gene annotation, and EST-SSR marker development of an important medicinal and edible crop, Amomum tsaoko (Zingiberaceae)

7Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Amomum tsaoko is a medicinal and food dual-use crop that belongs to the Zingiberaceae family. However, the lack of transcriptomic and genomic information has limited the understanding of the genetic basis of this species. Here, we performed transcriptome sequencing of samples from different A. tsaoko tissues, and identified and characterized the expressed sequence tag-simple sequence repeat (EST-SSR) markers. Results: A total of 58,278,226 high-quality clean reads were obtained and de novo assembled to generate 146,911 unigenes with an N50 length of 2002 bp. A total of 128,174 unigenes were successfully annotated by searching seven protein databases, and 496 unigenes were identified as annotated as putative terpenoid biosynthesis-related genes. Furthermore, a total of 55,590 EST-SSR loci were detected, and 42,333 primer pairs were successfully designed. We randomly selected 80 primer pairs to validate their polymorphism in A. tsaoko; 18 of these primer pairs produced distinct, clear, and reproducible polymorphisms. A total of 98 bands and 96 polymorphic bands were amplified by 18 pairs of EST-SSR primers for the 72 A. tsaoko accessions. The Shannon's information index (I) ranged from 0.477 (AM208) to 1.701 (AM242) with an average of 1.183, and the polymorphism information content (PIC) ranged from 0.223 (AM208) to 0.779 (AM247) with an average of 0.580, indicating that these markers had a high level of polymorphism. Analysis of molecular variance (AMOVA) indicated relatively low genetic differentiation among the six A. tsaoko populations. Cross-species amplification showed that 14 of the 18 EST-SSR primer pairs have transferability between 11 Zingiberaceae species. Conclusions: Our study is the first to provide transcriptome data of this important medicinal and edible crop, and these newly developed EST-SSR markers are a very efficient tool for germplasm evaluation, genetic diversity, and molecular marker-assisted selection in A. tsaoko.

Cite

CITATION STYLE

APA

Ma, M., Meng, H., Lei, E., Wang, T., Zhang, W., & Lu, B. (2022). De novo transcriptome assembly, gene annotation, and EST-SSR marker development of an important medicinal and edible crop, Amomum tsaoko (Zingiberaceae). BMC Plant Biology, 22(1). https://doi.org/10.1186/s12870-022-03827-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free