Intelligent Student Mental Health Assessment Model on Learning Management System

8Citations
Citations of this article
63Readers
Mendeley users who have this article in their library.

Abstract

A learning management system (LMS) is a software or web based application, commonly utilized for planning, designing, and assessing a particular learning procedure. Generally, the LMS offers a method of creating and delivering content to the instructor, monitoring students' involvement, and validating their outcomes. Since mental health issues become common among studies in higher education globally, it is needed to properly determine it to improve mental stability. This article develops a new seven spot lady bird feature selection with optimal sparse autoencoder (SSLBFS-OSAE) model to assess students' mental health on LMS. The major aim of the SSLBFS-OSAE model is to determine the proper health status of the students with respect to depression, anxiety, and stress (DAS). The SSLBFS-OSAE model involves a new SSLBFS model to elect a useful set of features. In addition, OSAE model is applied for the classification of mental health conditions and the performance can be improved by the use of cuckoo search optimization (CSO) based parameter tuning process. The design of CSO algorithm for optimally tuning the SAE parameters results in enhanced classification outcomes. For examining the improved classifier results of the SSLBFSOSAE model, a comprehensive results analysis is done and the obtained values highlighted the supremacy of the SSLBFS model over its recent methods interms of different measures.

Cite

CITATION STYLE

APA

Aljarallah, N. A., Dutta, A. K., Alsanea, M., & Sait, A. R. W. (2023). Intelligent Student Mental Health Assessment Model on Learning Management System. Computer Systems Science and Engineering, 44(2), 1853–1868. https://doi.org/10.32604/csse.2023.028755

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free