High energy demand results in comprehensive research of novel materials for energy sources and storage applications. Covalent organic frameworks (COFs) possess appropriate features such as long-range order, permanent porosity, tunable pore size, and ion diffusion pathways to be competitive electrode materials. Herein, we present a deep electrochemical study of two COF-aerogels shaped into flexible COF-electrodes (ECOFs) by a simple compression method to fabricate an electrochemical double-layer capacitor (EDLC). This energy storage system has considerable interest owing to its high-power density and long cycle life compared with batteries. Our result confirmed the outstanding behavior of ECOFs as EDLC devices with a capacity retention of almost 100 % after 10 000 charge/discharge cycles and, to our knowledge, the highest areal capacitance (9.55 mF cm−2) in aqueous electrolytes at higher scan rates (1000 mV s−1) for COFs. More importantly, the hierarchical porosity observed in the ECOFs increases ion transport, which permits a fast interface polarization (low τ0 values). The complete sheds light on using ECOFs as novel electrode material to fabricate EDLC devices.
CITATION STYLE
Martín-Illán, J., Sierra, L., Ocón, P., & Zamora, F. (2022). Electrochemical Double-Layer Capacitor based on Carbon@ Covalent Organic Framework Aerogels. Angewandte Chemie - International Edition, 61(48). https://doi.org/10.1002/anie.202213106
Mendeley helps you to discover research relevant for your work.