Influence of a novel deep-learning based reconstruction software on the objective and subjective image quality in low-dose abdominal computed tomography

21Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Objectives: Modern reconstruction and post-processing software aims at reducing image noise in CT images, potentially allowing for a reduction of the employed radiation exposure. This study aimed at assessing the influence of a novel deep-learning based software on the subjective and objective image quality compared to two traditional methods [filtered back-projection (FBP), iterative reconstruction (IR)]. Methods: In this institutional review board-approved retrospective study, abdominal low-dose CT images of 27 patients (mean age 38 ± 12 years, volumetric CT dose index 2.9 ± 1.8 mGy) were reconstructed with IR, FBP and, furthermore, post-processed using a novel software. For the three reconstructions, qualitative and quantitative image quality was evaluated by means of CT numbers, noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) in six different ROIs. Additionally, the reconstructions were compared using SNR, peak SNR, root mean square error and mean absolute error to assess structural differences. Results: On average, CT numbers varied within 1 Hounsfield unit (HU) for the three assessed methods in the assessed ROIs. In soft tissue, image noise was up to 42% lower compared to FBP and up to 27% lower to IR when applying the novel software. Consequently, SNR and CNR were highest with the novel software. For both IR and the novel software, subjective image quality was equal but higher than the image quality of FBP-images. Conclusion: The assessed software reduces image noise while maintaining image information, even in comparison to IR, allowing for a potential dose reduction of approximately 20% in abdominal CT imaging.

Cite

CITATION STYLE

APA

Steuwe, A., Weber, M., Bethge, O. T., Rademacher, C., Boschheidgen, M., Sawicki, L. M., … Aissa, J. (2021). Influence of a novel deep-learning based reconstruction software on the objective and subjective image quality in low-dose abdominal computed tomography. British Journal of Radiology, 94(1117). https://doi.org/10.1259/bjr.20200677

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free