Automated detection of cecal intubation with variable bowel preparation using a deep convolutional neural network

  • Low D
  • Hong Z
  • Khan R
  • et al.
N/ACitations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background and study aims Colonoscopy completion reduces post-colonoscopy colorectal cancer. As a result, there have been attempts at implementing artificial intelligence to automate the detection of the appendiceal orifice (AO) for quality assurance. However, the utilization of these algorithms has not been demonstrated in suboptimal conditions, including variable bowel preparation. We present an automated computer-assisted method using a deep convolutional neural network to detect the AO irrespective of bowel preparation.Methods A total of 13,222 images (6,663 AO and 1,322 non-AO) were extracted from 35 colonoscopy videos recorded between 2015 and 2018. The images were labelled with Boston Bowel Preparation Scale scores. A total of 11,900 images were used for training/validation and 1,322 for testing. We developed a convolutional neural network (CNN) with a DenseNet architecture pre-trained on ImageNet as a feature extractor on our data and trained a classifier uniquely tailored for identification of AO and non-AO images using binary cross entropy loss.Results The deep convolutional neural network was able to correctly classify the AO and non-AO images with an accuracy of 94 %. The area under the receiver operating curve of this neural network was 0.98. The sensitivity, specificity, positive predictive value, and negative predictive value of the algorithm were 0.96, 0.92, 0.92 and 0.96, respectively. AO detection was > 95 % regardless of BBPS scores, while non-AO detection improved from BBPS 1 score (83.95 %) to BBPS 3 score (98.28 %).Conclusions A deep convolutional neural network was created demonstrating excellent discrimination between AO from non-AO images despite variable bowel preparation. This algorithm will require further testing to ascertain its effectiveness in real-time colonoscopy.

Cite

CITATION STYLE

APA

Low, D. J., Hong, Z., Khan, R., Bansal, R., Gimpaya, N., & Grover, S. C. (2021). Automated detection of cecal intubation with variable bowel preparation using a deep convolutional neural network. Endoscopy International Open, 09(11), E1778–E1784. https://doi.org/10.1055/a-1546-8266

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free