Optical inspection of periodic nanostructures is a major challenge in the semiconductor industry due to constantly decreasing critical dimensions. In this paper we combine coherent Fourier scatterometry (CFS) with a sectioning mask for subwavelength grating parameter determination. By selecting only the most sensitive regions of the scattered light in the Fourier plane, one can retrieve grating parameters faster and with higher sensitivity than previous approaches. Moreover, the full process of CFS using focused light is explained and implemented in a subwavelength grating regime. The results of using transverse magnetic polarized input fields together with the proposed sectioning mask are presented and compared to the non-mask case.
CITATION STYLE
Siaudinyte, L., & Pereira, S. F. (2020). Far-field sectioning for the retrieval of subwavelength grating parameters using coherent Fourier scatterometry. Measurement Science and Technology, 31(10). https://doi.org/10.1088/1361-6501/ab7315
Mendeley helps you to discover research relevant for your work.