The thermal decomposition of polyphenolic resins was studied by reactive molecular dynamics (RMD) simulation at elevated temperatures. Atomistic models of the polyphenolic resins to be used in the RMD were constructed using an automatic method which calls routines from the software package Materials Studio. In order to validate the models, simulated densities and heat capacities were compared with experimental values. The most suitable combination of force field and thermostat for this system was the Forcite force field with the Nosé–Hoover thermostat, which gave values of heat capacity closest to those of the experimental values. Simulated densities approached a final density of 1.05–1.08 g/cm3 which compared favorably with the experimental values of 1.16–1.21 g/cm3 for phenol-formaldehyde resins. The RMD calculations were run using LAMMPS software at temperatures of 1250 K and 3000 K using the ReaxFF force field and employing an in-house routine for removal of products of condensation. The species produced during RMD correlated with those found experimentally for polyphenolic systems and rearrangements to form cyclopropane moieties were observed. At the end of the RMD simulations a glassy carbon char resulted.
CITATION STYLE
Purse, M., Edmund, G., Hall, S., Howlin, B., Hamerton, I., & Till, S. (2019). Reactive molecular dynamics study of the thermal decomposition of phenolic resins. Journal of Composites Science, 3(2). https://doi.org/10.3390/jcs3020032
Mendeley helps you to discover research relevant for your work.