Fluoresceinated Aminohexanol Tethered Inositol Hexakisphosphate: Studies on Arabidopsis thaliana and Drosophila melanogaster and Docking with 2P1M Receptor

1Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Inositol hexakisphosphate (InsP6; phytic acid) is considered as the second messenger and plays a very important role in plants, animals, and human beings. It is the principal storage form of phosphorus in many plant tissues, especially in dry fruits, bran, and seeds. The resulting anion is a colorless species that plays a critical role in nutrition and is believed to cure many diseases. A fluoresceinated aminohexanol tethered inositol hexakisphosphate (III) had been synthesized earlier involving many complicated steps. We describe here a simple two-step synthesis of (III) and its characterization using different techniques such as matrix-assisted laser desorption ionization mass spectrometry, tandem mass spectrometry, and Fourier transform infrared, ultraviolet-visible, ultraviolet-fluorescence, 1H nuclear magnetic resonance (NMR), and two-dimensional NMR spectroscopies. The effect of (III) has been investigated in the model systems, Arabidopsis thaliana and Drosophila melanogaster. Using Schrodinger software, computational studies on the binding of (III) with the protein 2P1M (Auxin-receptor TIR1-adaptor ASK1 complex) has revealed strong binding propensity with this compound. These studies on the fluoresceinated tethered phytic acid could have far reaching implications on its efficacy for human health and treatment of diseases (cancer/tumor and glioblastoma) and for understanding phosphorous recycling in the environment, especially for plant systems.

Cite

CITATION STYLE

APA

Thakur, S. K., Goswami, K., Rao, P., Kaushik, S., Singh, B. P., Kain, P., … Eswaran, S. V. (2020). Fluoresceinated Aminohexanol Tethered Inositol Hexakisphosphate: Studies on Arabidopsis thaliana and Drosophila melanogaster and Docking with 2P1M Receptor. ACS Omega, 5(16), 9585–9597. https://doi.org/10.1021/acsomega.0c00961

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free