Towards Knowledge Uncertainty Estimation for Open Set Recognition

8Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

Uncertainty is ubiquitous and happens in every single prediction of Machine Learning models. The ability to estimate and quantify the uncertainty of individual predictions is arguably relevant, all the more in safety-critical applications. Real-world recognition poses multiple challenges since a model’s knowledge about physical phenomenon is not complete, and observations are incomplete by definition. However, Machine Learning algorithms often assume that train and test data distributions are the same and that all testing classes are present during training. A more realistic scenario is the Open Set Recognition, where unknown classes can be submitted to an algorithm during testing. In this paper, we propose a Knowledge Uncertainty Estimation (KUE) method to quantify knowledge uncertainty and reject out-of-distribution inputs. Additionally, we quantify and distinguish aleatoric and epistemic uncertainty with the classical information-theoretical measures of entropy by means of ensemble techniques. We performed experiments on four datasets with different data modalities and compared our results with distance-based classifiers, SVM-based approaches and ensemble techniques using entropy measures. Overall, the effectiveness of KUE in distinguishing in- and out-distribution inputs obtained better results in most cases and was at least comparable in others. Furthermore, a classification with rejection option based on a proposed combination strategy between different measures of uncertainty is an application of uncertainty with proven results.

Cite

CITATION STYLE

APA

Pires, C., Barandas, M., Fernandes, L., Folgado, D., & Gamboa, H. (2020). Towards Knowledge Uncertainty Estimation for Open Set Recognition. Machine Learning and Knowledge Extraction, 2(4), 505–532. https://doi.org/10.3390/make2040028

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free