Genetic interactions between ANLN and KDR are prognostic for breast cancer survival

23Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

Single nucleotide polymorphisms (SNPs) are the most common genetic variation in mammalian cells with prognostic potential. Anillin-actin binding protein (ANLN) has been identified as being involved in PI3K/PTEN signaling, which is critical in cell life/death control, and kinase insert domain receptor (KDR) encodes a key receptor mediating the cancer angiogenesis/metastasis switch. Knowledge of the intrinsic connections between PI3K/PTEN and KDR signaling, which represent two critical transitions in carcinogenesis, led the present study to investigate the effects of the potential synergy between ANLN and KDR on breast cancer outcome and identify relevant SNPs driving such a synergy at the genetic level. The survival associations of SNPs from KDR and ANLN were assessed through pairwise interaction survival analysis, quantitative trait loci analysis, pathway enrichment analysis and network construction, and the interactions between ANLN and KDR were validated in vitro. It was found that both rare homozygotes in the ANLN:rs12535394 and KDR:rs11133360 SNP pair are prognostic of favorable breast cancer survival and underpin the prominent roles of the immune response in cancer state control. This study contributes to breast cancer prognosis and therapeutic design by providing genetic evidence of interactions between ANLN and KDR, and suggesting the prominent role of the immune response in driving the synergies between the cancer cell life/death and angiogenesis/metastasis transitions during carcinogenesis.

Cite

CITATION STYLE

APA

Dai, X., Chen, X., Hakizimana, O., & Mei, Y. (2019). Genetic interactions between ANLN and KDR are prognostic for breast cancer survival. Oncology Reports, 42(6), 2255–2266. https://doi.org/10.3892/or.2019.7332

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free