Current models for the early diversification of living frogs inferred from morphological, ontogenetic, or DNA sequence data invoke very different scenarios of character evolution and biogeography. To explore central controversies on the phylogeny of Anura, we analyzed nearly 4000 base pairs of mitochondrial and nuclear DNA for the major frog lineages. Likelihood-based analyses of this data set are congruent with morphological evidence in supporting a paraphyletic arrangement of archaeobatrachian frogs, with an (Ascaphus + Leiopelma) clade as the sister-group of all other living anurans. The stability of this outcome is reinforced by screening for phylogenetic bias resulting from site-specific rate variation, homoplasy, or the obligatory use of distantly related outgroups. Twenty-one alternative branching and rooting hypotheses were evaluated using a nonparametric multicomparison test and parametric bootstrapping. Relaxed molecular clock estimates situate the emergence of crown-group anurans in the Triassic, approximately 55 million years prior to their first appearance in the fossil record. The existence of at least four extant frog lineages on the supercontinent Pangaea before its breakup gains support from the estimation that three early splits between Laurasia- and Gondwana-associated families coincide with the initial rifting of these landmasses. This observation outlines the potential significance of this breakup event in the formation of separate Mesozoic faunal assemblages in both hemispheres. Copyright © Society of Systematic Biologists.
CITATION STYLE
Roelants, K., & Bossuyt, F. (2005). Archaeobatrachian paraphyly and Pangaean diversification of crown-group frogs. Systematic Biology, 54(1), 111–126. https://doi.org/10.1080/10635150590905894
Mendeley helps you to discover research relevant for your work.