On a unified framework for linear nuisance parameters

3Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Estimation problems in the presence of deterministic linear nuisance parameters arise in a variety of fields. To cope with those, three common methods are widely considered: (1) jointly estimating the parameters of interest and the nuisance parameters; (2) projecting out the nuisance parameters; (3) selecting a reference and then taking differences between the reference and the observations, which we will refer to as “differential signal processing.” A lot of literature has been devoted to these methods, yet all follow separate paths. Based on a unified framework, we analytically explore the relations between these three methods, where we particularly focus on the third one and introduce a general differential approach to cope with multiple distinct nuisance parameters. After a proper whitening procedure, the corresponding best linear unbiased estimators (BLUEs) are shown to be all equivalent to each other. Accordingly, we unveil some surprising facts, which are in contrast to what is commonly considered in literature, e.g., the reference choice is actually not important for the differencing process. Since this paper formulates the problem in a general manner, one may specialize our conclusions to any particular application. Some localization examples are also presented in this paper to verify our conclusions.

References Powered by Scopus

Locating the nodes: Cooperative localization in wireless sensor networks

2813Citations
N/AReaders
Get full text

A Simple and Efficient Estimator for Hyperbolic Location

2465Citations
N/AReaders
Get full text

Hyperspectral Image Classification and Dimensionality Reduction: An Orthogonal Subspace Projection Approach

1498Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Filter Design for Autoregressive Moving Average Graph Filters

63Citations
N/AReaders
Get full text

Quadratic constrained weighted least-squares method for TDOA source localization in the presence of clock synchronization bias: Analysis and solution

28Citations
N/AReaders
Get full text

Dual-satellite source geolocation with time and frequency offsets and satellite location errors

14Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Hu, Y., & Leus, G. (2017). On a unified framework for linear nuisance parameters. Eurasip Journal on Advances in Signal Processing, 2017(1). https://doi.org/10.1186/s13634-016-0438-8

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 3

100%

Readers' Discipline

Tooltip

Engineering 2

50%

Business, Management and Accounting 1

25%

Psychology 1

25%

Save time finding and organizing research with Mendeley

Sign up for free