Equivalence of quantum heat machines, and quantum-thermodynamic signatures

390Citations
Citations of this article
231Readers
Mendeley users who have this article in their library.

Abstract

Quantum heat engines (QHE) are thermal machines where the working substance is a quantum object. In the extreme case, the working medium can be a single particle or a few-level quantum system. The study of QHE has shown a remarkable similarity with macroscopic thermodynamical results, thus raising the issue of what is quantum in quantum thermodynamics. Our main result is the thermodynamical equivalence of all engine types in the quantum regime of small action with respect to Planck's constant. They have the same power, the same heat, and the same efficiency, and they even have the same relaxation rates and relaxation modes. Furthermore, it is shown that QHE have quantum-thermodynamic signature; i.e., thermodynamic measurements can confirm the presence of quantum effects in the device. We identify generic coherent and stochastic work extraction mechanisms and show that coherence enables power outputs that greatly exceed the power of stochastic (dephased) engines.

Author supplied keywords

Cite

CITATION STYLE

APA

Uzdin, R., Levy, A., & Kosloff, R. (2015). Equivalence of quantum heat machines, and quantum-thermodynamic signatures. Physical Review X, 5(3). https://doi.org/10.1103/PhysRevX.5.031044

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free