Background: Minimally invasive separation surgery (MISS) is a safe and effective surgical technique, the current optimal treatment for spinal metastases. However, the learning curve for this technique has not been analyzed. This study aimed to define and analyze the surgical learning curve of MISS for the treatment of spinal metastases with small incision and freehand pedicle screw fixation. Methods: A continuous series of 62 patients with spinal metastases who underwent MISS were included. Each patient's operative data were accurately counted. The improvement of the patients' neurological function was followed up after surgery to evaluate the surgical treatment effect. Logarithmic curve-fit regression was used to analyze the surgical learning curve of MISS. The number of cases needed to achieve proficiency was analyzed. Based on this cut-off point, this series of cases was divided into the early phase and later phase groups. The influence of the time sequence of MISS on surgical data and surgical efficacy was analyzed. Results: The operative time decreased gradually with the number of surgical cases increasing and stabilized after the 20th patient. There was no statistical difference in demographic characteristics and preoperative characteristics between the two groups. The mean operative time in the later phase group was about 39 min shorter than that in the early phase group (mean 227.95 vs. 189.02 min, P = 0.027). However, it did not affect other operative data or the surgical treatment effect. Conclusion: The learning curve of MISS for spinal metastases is not steep. With the increase of surgeons' experience, the operative time drops rapidly and stabilizes within a certain range. MISS can be safely and effectively performed at the beginning of a surgeon's caree.
CITATION STYLE
Lin, J., Zhu, X., Tang, Q., Lu, J., Xu, H., Song, G., … Wang, J. (2022). Minimally invasive separation surgery for the treatment of spinal metastases with small incision and freehand pedicle screw fixation: the surgical learning curve. BMC Musculoskeletal Disorders, 23(1). https://doi.org/10.1186/s12891-022-05191-2
Mendeley helps you to discover research relevant for your work.