A Faster Algorithm for Propositional Model Counting Parameterized by Incidence Treewidth

4Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The propositional model counting problem (#SAT) is known to be fixed-parameter-tractable (FPT) when parameterized by the width k of a given tree decomposition of the incidence graph. The running time of the fastest known FPT algorithm contains the exponential factor of. We improve this factor to by utilizing fast algorithms for computing the zeta transform and covering product of functions representing partial model counts, thereby achieving the same running time as FPT algorithms that are parameterized by the less general treewidth of the primal graph. Our new algorithm is asymptotically optimal unless the Strong Exponential Time Hypothesis (SETH) fails.

Cite

CITATION STYLE

APA

Slivovsky, F., & Szeider, S. (2020). A Faster Algorithm for Propositional Model Counting Parameterized by Incidence Treewidth. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 12178 LNCS, pp. 267–276). Springer. https://doi.org/10.1007/978-3-030-51825-7_19

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free