Acquiring expertise in a task is often thought of as an automatic process that follows inevitably with practice according to the log-log law (aka: power law) of learning. However, as Ericsson, Chase, and Faloon (1980) showed, this is not true for digit-span experts and, as we show, it is certainly not true for Tetris players at any level of expertise. Although some people may simply “twitch” faster than others, the limit to Tetris expertise is not raw keypress time but the techniques acquired by players that allow them to use the tools provided by the hardware and software to compensate for the game's relentlessly increasing drop speed. Unfortunately, these increases in drop speed between Tetris levels make performance plateaus very short and quickly followed by game death. Hence, a player's success at discovering, exploring, and practicing new techniques for the tasks of board preparation, board maintenance, optimal placement discovery, zoid rotation, lateral movement of zoids, and other tasks important to expertise in Tetris is limited. In this paper, we analyze data collected from 492 Tetris players to reveal the challenges they confronted while constructing expertise via the discovery of new techniques for gameplay at increasingly difficult levels of Tetris.
CITATION STYLE
Gray, W. D., & Banerjee, S. (2021). Constructing Expertise: Surmounting Performance Plateaus by Tasks, by Tools, and by Techniques. Topics in Cognitive Science, 13(4), 610–665. https://doi.org/10.1111/tops.12575
Mendeley helps you to discover research relevant for your work.