Heterocyclic Chromophore Amphiphiles and their Supramolecular Polymerization

7Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Supramolecular polymerization of π-conjugated amphiphiles in water is an attractive approach to create functional nanostructures. Here, we report on the synthesis, optoelectronic and electrochemical properties, aqueous supramolecular polymerization, and conductivity of polycyclic aromatic dicarboximide amphiphiles. The chemical structure of the model perylene monoimide amphiphile was modified with heterocycles, essentially substituting one fused benzene ring with thiophene, pyridine or pyrrole rings. All the heterocycle-containing monomers investigated underwent supramolecular polymerization in water. Large changes to the monomeric molecular dipole moments led to nanostructures with low electrical conductivity due to diminished interactions. Although the substitution of benzene with thiophene did not notably change the monomer dipole moment, it led to crystalline nanoribbons with 20-fold higher electrical conductivity, due to enhanced dispersion interactions as a result of the presence of sulfur atoms.

Cite

CITATION STYLE

APA

Đorđević, L., Sai, H., Yang, Y., Sather, N. A., Palmer, L. C., & Stupp, S. I. (2023). Heterocyclic Chromophore Amphiphiles and their Supramolecular Polymerization. Angewandte Chemie - International Edition, 62(17). https://doi.org/10.1002/anie.202214997

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free