Wound infection with Pseudomonas aeruginosa (PA) is a serious complication and is responsible for higher rates of mortality in burn patients. Because of the resistance of PA to many antibiotics and antiseptics, an effective treatment is difficult. As a possible alternative, cold atmospheric plasma (CAP) can be considered for treatment, as antibacterial effects are known from some types of CAP. Hence, we preclinically tested the CAP device PlasmaOne and found that CAP was effective against PA in various test systems. CAP induced an accumulation of nitrite, nitrate, and hydrogen peroxide, combined with a decrease in pH in agar and solutions, which could be responsible for the antibacterial effects. In an ex vivo contamination wound model using human skin, a reduction in microbial load of about 1 log10 level was observed after 5 min of CAP treatment as well as an inhibition of biofilm formation. However, the efficacy of CAP was significantly lower when compared with commonly used antibacterial wound irrigation solutions. Nevertheless, a clinical use of CAP in the treatment of burn wounds is conceivable on account of the potential resistance of PA to common wound irrigation solutions and the possible wound healing-promoting effects of CAP.
CITATION STYLE
Bagheri, M., von Kohout, M., Zoric, A., Fuchs, P. C., Schiefer, J. L., & Opländer, C. (2023). Can Cold Atmospheric Plasma Be Used for Infection Control in Burns? A Preclinical Evaluation. Biomedicines, 11(5). https://doi.org/10.3390/biomedicines11051239
Mendeley helps you to discover research relevant for your work.