Highly diastereoselective cascade [5 + 1] double Michael reaction, a route for the synthesis of spiro(thio)oxindoles

4Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The first diastereoselective synthesis of spirothiooxindoles is reported via the Michael reaction between thiooxindoles and dibenzalacetones. The reaction was conducted without any catalyst or additive under green conditions, i.e., ethanol as the solvent and at room temperature. In addition, the described robust method benefits from scalability, simple work-up, and column chromatography-free purification. This work demonstrates the art of governing regio- and stereoselectivity, which has been discussed in the light of Density Functional Theory calculations. Our method represents the first synthesis of spiro[cyclohexanone-thiooxindoles] with the relative configuration of the aryl moieties at the cyclohexanone ring as cis. The obtained cis-spirothiooxindoles, can be used to afford cis-spirooxindoles, which their synthesis had not been explored before. According to our molecular docking studies, cis-spirooxindoles demonstrate higher binding affinities than corresponding trans-spirooxindoles for the OPRT domain of the Leishmania donovani uridine 5′-monophosphate synthase (LdUMPS). Thus, the reported method may eventually be utilized to develop new hit compounds for leishmaniasis treatment.

Cite

CITATION STYLE

APA

Moghaddam, F. M., Saberi, V., & Karimi, A. (2021). Highly diastereoselective cascade [5 + 1] double Michael reaction, a route for the synthesis of spiro(thio)oxindoles. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-01766-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free