Phosphoserine functionalized cements preserve metastable phases, and reprecipitate octacalcium phosphate, hydroxyapatite, dicalcium phosphate, and amorphous calcium phosphate, during degradation, in vitro

8Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

Abstract

Phosphoserine modified cements (PMC) exhibit unique properties, including strong adhesion to tissues and biomaterials. While TTCP-PMCs remodel into bone in vivo, little is known regarding the bioactivity and physiochemical changes that occur during resorption. In the present study, changes in the mechanical strength and composition were evaluated for 28 days, for three formulations of αTCP based PMCs. PMCs were significantly stronger than unmodified cement (38–49 MPa vs. 10 MPa). Inclusion of wollastonite in PMCs appeared to accelerate the conversion to hydroxyapatite, coincident with slight decrease in strength. In non-wollastonite PMCs the initial compressive strength did not change after 28 days in PBS (p > 0.99). Dissolution/degradation of PMC was evaluated in acidic (pH 2.7, pH 4.0), and supersaturated fluids (simulated body fluid (SBF)). PMCs exhibited comparable mass loss (<15%) after 14 days, regardless of pH and ionic concentration. Electron microscopy, infrared spectroscopy, and X-ray analysis revealed that significant amounts of brushite, octacalcium phosphate, and hydroxyapatite reprecipitated, following dissolution in acidic conditions (pH 2.7), while amorphous calcium phosphate formed in SBF. In conclusion, PMC surfaces remodel into metastable precursors to hydroxyapatite, in both acidic and neutral environments. By tuning the composition of PMCs, durable strength in fluids, and rapid transformation can be obtained.

Cite

CITATION STYLE

APA

Bystrom, J. L., & Pujari-Palmer, M. (2019). Phosphoserine functionalized cements preserve metastable phases, and reprecipitate octacalcium phosphate, hydroxyapatite, dicalcium phosphate, and amorphous calcium phosphate, during degradation, in vitro. Journal of Functional Biomaterials, 10(4). https://doi.org/10.3390/jfb10040054

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free