Post-stroke unilateral spatial neglect: Virtual reality-based navigation and detection tasks reveal lateralized and non-lateralized deficits in tasks of varying perceptual and cognitive demands

17Citations
Citations of this article
222Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Unilateral spatial neglect (USN), a highly prevalent and disabling post-stroke impairment, has been shown to affect the recovery of locomotor and navigation skills needed for community mobility. We recently found that USN alters goal-directed locomotion in conditions of different cognitive/perceptual demands. However, sensorimotor post-stroke dysfunction (e.g. decreased walking speed) could have influenced the results. Analogous to a previously used goal-directed locomotor paradigm, a seated, joystick-driven navigation experiment, minimizing locomotor demands, was employed in individuals with and without post-stroke USN (USN+ and USN-, respectively) and healthy controls (HC). Methods: Participants (n = 15 per group) performed a seated, joystick-driven navigation and detection time task to targets 7 m away at 0°, ±15°/30° in actual (visually-guided), remembered (memory-guided) and shifting (visually-guided with representational updating component) conditions while immersed in a 3D virtual reality environment. Results: Greater end-point mediolateral errors to left-sided targets (remembered and shifting conditions) and overall lengthier onsets in reorientation strategy (shifting condition) were found for USN+ vs. USN- and vs. HC (p < 0.05). USN+ individuals mostly overshot left targets (- 15°/- 30°). Greater delays in detection time for target locations across the visual spectrum (left, middle and right) were found in USN+ vs. USN- and HC groups (p < 0.05). Conclusion: USN-related attentional-perceptual deficits alter navigation abilities in memory-guided and shifting conditions, independently of post-stroke locomotor deficits. Lateralized and non-lateralized deficits in object detection are found. The employed paradigm could be considered in the design and development of sensitive and functional assessment methods for neglect; thereby addressing the drawbacks of currently used traditional paper-and-pencil tools.

Cite

CITATION STYLE

APA

Ogourtsova, T., Archambault, P. S., & Lamontagne, A. (2018). Post-stroke unilateral spatial neglect: Virtual reality-based navigation and detection tasks reveal lateralized and non-lateralized deficits in tasks of varying perceptual and cognitive demands. Journal of NeuroEngineering and Rehabilitation, 15(1). https://doi.org/10.1186/s12984-018-0374-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free